$ a、b $が両方とも正の整数の場合、いつでも$ a = kb + \ ell $と書くことができます。 $ 0 \ leq \ ell < b $。 $ \ ell $を剰余と呼び、$ k $を商と呼びます。最初の例では、$ 5 = 2 \ cdot 2 + 1 $なので、5 % 2 == 1
です。 2番目の例では、$ 2 = 0 \ cdot 9 + 2 $なので、2 % 9 == 2
です。より一般的には、$ a < b $の場合、a % b == a
です。
符号付き整数の規則もあります。しかし、残念ながら私はそれを思い出せません。また、0 % x == 0
は$ x \ neq 0 $のときはいつでも、x % 0
は例外を引き起こします( “ゼロ除算」)。
コメント