SCN⁻の最も“重要な”共鳴構造は何ですか?

多くのオンラインリファレンスによると、$ \ ce {SCN-} $には2つの共鳴構造があります: 構造1と2

なぜこの構造も不可能なのか疑問に思いますか?

構造3

形式電荷が高いため、構造3はまれであると思いますが、そうではありません。可能な共鳴構造として含まれていますか?

さらに、構造1と構造2のどちらがより一般的であるかについて意見の相違があります。負の電荷はより電気的に負のN原子上にあるため、構造2がより一般的であると予想されます。 。ただし、このワークシートには、構造1の方が一般的であると記載されています。一方、このビデオは、構造2がより一般的であると述べています。どちらにする必要がありますか?

コメント

  • 私のより一般的"?

回答

まず、不適切な使用に注意する必要があります common および rare という用語のうち、最も頻繁に発生する構造については回答しません。これは、慎重に選ばれた言葉がないためだと思います。

上記のスケッチされた制限構造のどれがより安定しているか、正確には最も重要なものであるかを予測する必要があります。

あなたが提案したものは確かに可能であり、なぜそれが主要な貢献者ではなく、主要な貢献者でもないのかを知っています。

通常、あなたが言ったように、形式電荷を持つ構造間の識別は、要素の電気陰性度に従って配置することによって行われます。

この場合、このルールは構造2を指し、窒素の負電荷。

ただし、対応する結合のエネルギーを調べると、2はクムレンであり、炭素原子の周りで特に安定した構成ではないことがわかります。

反対側図1に示すように、安定したCN三重結合が達成され、大きな硫黄原子は依然としてそれ自体に電子密度を広げることができる。

したがって、私たちは答えるのが非常に簡単ではないケースに直面しており、私自身は疑う必要があります。

実際のところ、1が確かにメジャーであることを覚えています寄稿者。 SCNアニオンでは、負電荷は硫黄側で約50%、窒素側で30%です。しかし、値については私は間違っている可能性があります。

回答

DF-BP86 / def2-SVPレベルの理論で簡単な計算を実行し、自然共鳴で分析しました理論(自然結合軌道理論から)。これにより、この波動関数の主な要因は次のようになります。$$ \ left [\ underset {(1)} {\ overset {67.49 \%} {\ ce {^ -SC#N}}} \ ce {<->} \ underset {(2)} {\ overset {21.25 \%} {\ ce {S = C = N ^-} }} \ right] $$

3番目の貢献者は、硫黄と窒素の間に$ 7.22 \%$の「長距離結合」を持つ奇妙な構造です。他のすべての貢献は無視/破棄されます。

構造3 は確かに有効な貢献者ですが、実際の貢献はごくわずかです。プログラムにそれを構造体として使用するように強制すると、軌道をその構造体に一致させることができなかったため、エラーが発生しました。その理由は、硫黄と炭素の重なりが貧弱すぎて、実際には良い貢献者とは見なされない可能性があります。これは、2番目の構造の寄与が小さいことも説明します。

ここに(NBOによる)局在化した分子軌道があります:

SCNのnbo軌道-

(色コード:青/オレンジ-占有分子軌道[ルイス];赤/黄色-仮想分子軌道[unrccupied、non-Lewis])

上記への原子軌道に関する寄与の合計:

 (Occupancy) Bond orbital / Coefficients / Hybrids ------------------ Lewis ------------------------------------------------------ 8. (1.98209) LP ( 1) S 1 s( 79.86%)p 0.25( 20.13%)d 0.00( 0.01%) 9. (1.77474) LP ( 2) S 1 s( 0.00%)p 1.00( 99.91%)d 0.00( 0.09%) 10. (1.77474) LP ( 3) S 1 s( 0.00%)p 1.00( 99.91%)d 0.00( 0.09%) 11. (1.96342) LP ( 1) N 3 s( 52.42%)p 0.91( 47.54%)d 0.00( 0.04%) 12. (1.99743) BD ( 1) S 1- C 2 ( 44.86%) 0.6698* S 1 s( 20.64%)p 3.81( 78.61%)d 0.04( 0.75%) ( 55.14%) 0.7425* C 2 s( 51.41%)p 0.94( 48.47%)d 0.00( 0.12%) 13. (1.99846) BD ( 1) C 2- N 3 ( 41.02%) 0.6404* C 2 s( 48.44%)p 1.06( 51.48%)d 0.00( 0.08%) ( 58.98%) 0.7680* N 3 s( 48.02%)p 1.08( 51.75%)d 0.00( 0.23%) 14. (1.99735) BD ( 2) C 2- N 3 ( 43.98%) 0.6632* C 2 s( 0.00%)p 1.00( 99.91%)d 0.00( 0.09%) ( 56.02%) 0.7485* N 3 s( 0.00%)p 1.00( 99.80%)d 0.00( 0.20%) 15. (1.99735) BD ( 3) C 2- N 3 ( 43.98%) 0.6632* C 2 s( 0.00%)p 1.00( 99.91%)d 0.00( 0.09%) ( 56.02%) 0.7485* N 3 s( 0.00%)p 1.00( 99.80%)d 0.00( 0.20%) ---------------- non-Lewis ---------------------------------------------------- 16. (0.01904) BD*( 1) S 1- C 2 ( 55.14%) 0.7425* S 1 s( 20.64%)p 3.81( 78.61%)d 0.04( 0.75%) ( 44.86%) -0.6698* C 2 s( 51.41%)p 0.94( 48.47%)d 0.00( 0.12%) 17. (0.01384) BD*( 1) C 2- N 3 ( 58.98%) 0.7680* C 2 s( 48.44%)p 1.06( 51.48%)d 0.00( 0.08%) ( 41.02%) -0.6404* N 3 s( 48.02%)p 1.08( 51.75%)d 0.00( 0.23%) 18. (0.22011) BD*( 2) C 2- N 3 ( 56.02%) 0.7485* C 2 s( 0.00%)p 1.00( 99.91%)d 0.00( 0.09%) ( 43.98%) -0.6632* N 3 s( 0.00%)p 1.00( 99.80%)d 0.00( 0.20%) 19. (0.22011) BD*( 3) C 2- N 3 ( 56.02%) 0.7485* C 2 s( 0.00%)p 1.00( 99.91%)d 0.00( 0.09%) ( 43.98%) -0.6632* N 3 s( 0.00%)p 1.00( 99.80%)d 0.00( 0.20%) 

用語について。 Alchimistaはすでにこのほとんどを説明していますが、十分に強調することはできません:最も安定した共鳴構造というものはありません。したがって、一般的と言うときは波動関数への大きな寄与を意味し、まれと言うときはおそらくほとんど貢献を意味しません。それらはすべて架空のものであるため、どの共鳴構造も互いに独立することはできません。

詳細については、こちらをご覧ください:共振とは何ですか?共振構造は実際のものですか?

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です