Emular uma CPU MOS 6502

Isso é meio que inspirado no desafio Intel 8086 que “também está disponível aqui, mas achei que um desafio 6502 também seria interessante .

O desafio

Eu pensei seria divertido ver os resultados. Obviamente, este é o lado mais avançado do espectro. O desafio é escrever seu próprio emulador de CPU 6502. Isso envolve, é claro, compreender seu conjunto de instruções e seu formato de codificação . Os recursos estão vinculados na parte inferior deste. O 6502 é um dos processadores do mundo real mais fáceis de emular. Para os fins deste desafio, você não precisará se preocupar com o tempo do ciclo se não quiser – mas isso é sempre uma vantagem a incluir!

NÃO COPIE O CÓDIGO DE OUTRA PESSOA !! Claro, você certamente pode dar uma olhada em outros emuladores para ajudá-lo a entender, mas nada de copiar e colar! 🙂

Uma vez que seu código funciona, você pode sempre ir mais longe se quiser e transformá-lo em um emulador Apple II, ou NES, C64, VIC-20 ou qualquer um dos outros bilhões de antigos 6502 sistemas baseados em antigamente.

Testando seu emulador

Compilei um conjunto de testes 6502 para o qual encontrei o código-fonte aqui: http://code.google.com/p/hmc-6502/source/browse/trunk/emu/testvectors/AllSuiteA.asm

Minha versão compilada pode ser baixada aqui: http://rubbermallet.org/AllSuiteA.zip

Carregue o binário de 48 KB no espaço de memória do seu emulador por $ 4000, o que deixa 16 KB de RAM de leitura e gravação abaixo dele. Quando o teste terminar a execução, o valor no endereço $ 0210 deve ser $ FF, se sua CPU for aprovada. Você saberá que o teste foi concluído quando o contador do programa (PC) atingiu o endereço $ 45C0.

Outros testes também estão disponíveis aqui: http://visual6502.org/wiki/index.php?title=6502TestPrograms

Fazendo algo mais interativo com ele

Assim que sua CPU funcionar, você provavelmente desejará fazer algo mais divertido do que olhar para o resultado do teste! Compilei uma imagem ROM do Enhanced BASIC para o 6502. Tem 16 KB, então você deve carregá-la em $ C000 de seu espaço de memória emulada, reiniciar seu 6502 virtual e começar a execução.

Baixe este ZIP , que contém ehbasic.bin: http://rubbermallet.org/ehbasic.zip

A maneira como o EhBASIC lida com entrada / saída é muito simples. Quando ele deseja gravar um caractere no console, ele grava o byte na localização de memória $ F001. Portanto, quando o emulador vir o 6502 tentando gravar nesse local, basta imprimir o valor do caractere no console com um printf (“% c”, valor); ou como você quiser. (Este desafio não é limitado a C, é claro)

Quando ele pesquisa um caractere sendo inserido no console, ele ” é muito semelhante. Ele continua lendo da localização de memória $ F004, onde você deve ter o próximo valor de caractere ASCII do teclado esperando para ser lido. Se não houver mais entrada para ler, ele deve retornar um valor zero.

O EhBASIC pesquisa o valor naquele local até que seja diferente de zero, o que permite saber que o byte é uma entrada válida do teclado. É por isso que, se não houver mais entrada para ler, o emulador deve retornar zero aqui. O EhBASIC girará nele até a próxima chave válida quando estiver procurando por entrada.

Se você não limpar esse valor para zero depois de ler o último valor da chave, fará com que ele se repita como se você estava mantendo a tecla pressionada, tome cuidado para fazer isso corretamente!

Se o seu emulador funcionar corretamente, é isso que você verá impresso no console quando ele executar a imagem ROM:

6502 EhBASIC [C]old/[W]arm ? 

Pressione C, depois pressione Enter e você verá:

Memory size ? 31999 Bytes free Enhanced BASIC 2.22 Ready 

Os bytes livres podem ser diferente para você, mas no meu emulador eu limitei a área de memória gravável a um limite de 32 KB. Você poderia realmente ir até onde a ROM começa, que é a marca de 48 KB.

6502 links de recursos da CPU

Aqui estão alguns recursos que devem fornecer informações suficientes para trabalhar:

http://www.obelisk.demon.co.uk/6502/instructions.html

http://www.e-tradition.net/bytes/6502/6502_instruction_set.html

http://www.llx.com/~nparker/a2/opcodes.html < – este tem algumas informações muito interessantes

http://en.wikipedia.org/wiki/MOS_Technology_6502

Se você tiver dúvidas ou precisar de mais informações técnicas, fique à vontade para me perguntar. Há também uma grande quantidade de outras informações do 6502 na web. O Google é seu amigo!

Comentários

  • Parece haver uma disparidade nesta frase: ” Se não há mais nenhuma entrada para ler, ela deve retornar um valor zero.Isso faz com que o EhBASIC continue pesquisando até que ‘ seja não zero. ”
  • Er, erro meu. Não ‘ não expliquei bem. Eu quis explicar que o EhBASIC pesquisa o valor naquele local até que ‘ seja diferente de zero, o que permite que ele saiba que o byte é uma entrada válida do teclado. É por isso que ‘ se não ‘ s não há mais entrada para ler, o emulador deve retornar zero aqui. Eu ‘ vou editar isso.
  • Posso postar meu próprio core 6502 eventualmente, mas ‘ vou aguarde algumas entradas de outros primeiro. Espero que alguém dê uma chance a este desafio. Houve algumas soluções para o desafio do 8086, então, claramente, há pessoas inteligentes o suficiente aqui para fazer isso. 8086 é muito mais difícil!
  • Eu adoraria tentar isso, embora não em qualquer sentido competitivo. O problema para mim é encontrar tempo. Acho que seria bom se você pudesse fornecer outro programa de teste que exercite o emulador completamente e produza alguma saída facilmente verificável, semelhante ao que foi feito para o desafio do 8086.
  • Como você determina quem ganha? (deve haver um vencedor)

Resposta

Pensei em prosseguir e postar minha própria implementação. É COMPLETAMENTE não jogado, mas é uma implementação completa.

  • 668 linhas de C. (sem contar linhas em branco ou linhas com apenas comentários)
  • Suporta (eu acho ) todas as instruções não documentadas.
  • Suporta BCD.
  • Tempo de ciclo do relógio da CPU. (incluindo ajustes em certos envoltórios de limite de página)
  • Pode executar instruções em uma única etapa ou especificando o número de tiques.
  • Suporta ligar uma função externa a ser chamada após cada instrução é executado. Isso porque era originalmente para um emulador NES e eu usei isso para sincronismo de áudio.
/* Fake6502 CPU emulator core v1.1 ******************* * (c)2011-2013 Mike Chambers * *****************************************************/ #include <stdio.h> #include <stdint.h> //externally supplied functions extern uint8_t read6502(uint16_t address); extern void write6502(uint16_t address, uint8_t value); //6502 defines #define UNDOCUMENTED //when this is defined, undocumented opcodes are handled. //otherwise, they"re simply treated as NOPs. //#define NES_CPU //when this is defined, the binary-coded decimal (BCD) //status flag is not honored by ADC and SBC. the 2A03 //CPU in the Nintendo Entertainment System does not //support BCD operation. #define FLAG_CARRY 0x01 #define FLAG_ZERO 0x02 #define FLAG_INTERRUPT 0x04 #define FLAG_DECIMAL 0x08 #define FLAG_BREAK 0x10 #define FLAG_CONSTANT 0x20 #define FLAG_OVERFLOW 0x40 #define FLAG_SIGN 0x80 #define BASE_STACK 0x100 #define saveaccum(n) a = (uint8_t)((n) & 0x00FF) //flag modifier macros #define setcarry() status |= FLAG_CARRY #define clearcarry() status &= (~FLAG_CARRY) #define setzero() status |= FLAG_ZERO #define clearzero() status &= (~FLAG_ZERO) #define setinterrupt() status |= FLAG_INTERRUPT #define clearinterrupt() status &= (~FLAG_INTERRUPT) #define setdecimal() status |= FLAG_DECIMAL #define cleardecimal() status &= (~FLAG_DECIMAL) #define setoverflow() status |= FLAG_OVERFLOW #define clearoverflow() status &= (~FLAG_OVERFLOW) #define setsign() status |= FLAG_SIGN #define clearsign() status &= (~FLAG_SIGN) //flag calculation macros #define zerocalc(n) {\ if ((n) & 0x00FF) clearzero();\ else setzero();\ } #define signcalc(n) {\ if ((n) & 0x0080) setsign();\ else clearsign();\ } #define carrycalc(n) {\ if ((n) & 0xFF00) setcarry();\ else clearcarry();\ } #define overflowcalc(n, m, o) { /* n = result, m = accumulator, o = memory */ \ if (((n) ^ (uint16_t)(m)) & ((n) ^ (o)) & 0x0080) setoverflow();\ else clearoverflow();\ } //6502 CPU registers uint16_t pc; uint8_t sp, a, x, y, status = FLAG_CONSTANT; //helper variables uint64_t instructions = 0; //keep track of total instructions executed uint32_t clockticks6502 = 0, clockgoal6502 = 0; uint16_t oldpc, ea, reladdr, value, result; uint8_t opcode, oldstatus; //a few general functions used by various other functions void push16(uint16_t pushval) { write6502(BASE_STACK + sp, (pushval >> 8) & 0xFF); write6502(BASE_STACK + ((sp - 1) & 0xFF), pushval & 0xFF); sp -= 2; } void push8(uint8_t pushval) { write6502(BASE_STACK + sp--, pushval); } uint16_t pull16() { uint16_t temp16; temp16 = read6502(BASE_STACK + ((sp + 1) & 0xFF)) | ((uint16_t)read6502(BASE_STACK + ((sp + 2) & 0xFF)) << 8); sp += 2; return(temp16); } uint8_t pull8() { return (read6502(BASE_STACK + ++sp)); } void reset6502() { pc = (uint16_t)read6502(0xFFFC) | ((uint16_t)read6502(0xFFFD) << 8); a = 0; x = 0; y = 0; sp = 0xFD; status |= FLAG_CONSTANT; } static void (*addrtable[256])(); static void (*optable[256])(); uint8_t penaltyop, penaltyaddr; //addressing mode functions, calculates effective addresses static void imp() { //implied } static void acc() { //accumulator } static void imm() { //immediate ea = pc++; } static void zp() { //zero-page ea = (uint16_t)read6502((uint16_t)pc++); } static void zpx() { //zero-page,X ea = ((uint16_t)read6502((uint16_t)pc++) + (uint16_t)x) & 0xFF; //zero-page wraparound } static void zpy() { //zero-page,Y ea = ((uint16_t)read6502((uint16_t)pc++) + (uint16_t)y) & 0xFF; //zero-page wraparound } static void rel() { //relative for branch ops (8-bit immediate value, sign-extended) reladdr = (uint16_t)read6502(pc++); if (reladdr & 0x80) reladdr |= 0xFF00; } static void abso() { //absolute ea = (uint16_t)read6502(pc) | ((uint16_t)read6502(pc+1) << 8); pc += 2; } static void absx() { //absolute,X uint16_t startpage; ea = ((uint16_t)read6502(pc) | ((uint16_t)read6502(pc+1) << 8)); startpage = ea & 0xFF00; ea += (uint16_t)x; if (startpage != (ea & 0xFF00)) { //one cycle penlty for page-crossing on some opcodes penaltyaddr = 1; } pc += 2; } static void absy() { //absolute,Y uint16_t startpage; ea = ((uint16_t)read6502(pc) | ((uint16_t)read6502(pc+1) << 8)); startpage = ea & 0xFF00; ea += (uint16_t)y; if (startpage != (ea & 0xFF00)) { //one cycle penlty for page-crossing on some opcodes penaltyaddr = 1; } pc += 2; } static void ind() { //indirect uint16_t eahelp, eahelp2; eahelp = (uint16_t)read6502(pc) | (uint16_t)((uint16_t)read6502(pc+1) << 8); eahelp2 = (eahelp & 0xFF00) | ((eahelp + 1) & 0x00FF); //replicate 6502 page-boundary wraparound bug ea = (uint16_t)read6502(eahelp) | ((uint16_t)read6502(eahelp2) << 8); pc += 2; } static void indx() { // (indirect,X) uint16_t eahelp; eahelp = (uint16_t)(((uint16_t)read6502(pc++) + (uint16_t)x) & 0xFF); //zero-page wraparound for table pointer ea = (uint16_t)read6502(eahelp & 0x00FF) | ((uint16_t)read6502((eahelp+1) & 0x00FF) << 8); } static void indy() { // (indirect),Y uint16_t eahelp, eahelp2, startpage; eahelp = (uint16_t)read6502(pc++); eahelp2 = (eahelp & 0xFF00) | ((eahelp + 1) & 0x00FF); //zero-page wraparound ea = (uint16_t)read6502(eahelp) | ((uint16_t)read6502(eahelp2) << 8); startpage = ea & 0xFF00; ea += (uint16_t)y; if (startpage != (ea & 0xFF00)) { //one cycle penlty for page-crossing on some opcodes penaltyaddr = 1; } } static uint16_t getvalue() { if (addrtable[opcode] == acc) return((uint16_t)a); else return((uint16_t)read6502(ea)); } static void putvalue(uint16_t saveval) { if (addrtable[opcode] == acc) a = (uint8_t)(saveval & 0x00FF); else write6502(ea, (saveval & 0x00FF)); } //instruction handler functions static void adc() { penaltyop = 1; value = getvalue(); result = (uint16_t)a + value + (uint16_t)(status & FLAG_CARRY); carrycalc(result); zerocalc(result); overflowcalc(result, a, value); signcalc(result); #ifndef NES_CPU if (status & FLAG_DECIMAL) { clearcarry(); if ((a & 0x0F) > 0x09) { a += 0x06; } if ((a & 0xF0) > 0x90) { a += 0x60; setcarry(); } clockticks6502++; } #endif saveaccum(result); } static void and() { penaltyop = 1; value = getvalue(); result = (uint16_t)a & value; zerocalc(result); signcalc(result); saveaccum(result); } static void asl() { value = getvalue(); result = value << 1; carrycalc(result); zerocalc(result); signcalc(result); putvalue(result); } static void bcc() { if ((status & FLAG_CARRY) == 0) { oldpc = pc; pc += reladdr; if ((oldpc & 0xFF00) != (pc & 0xFF00)) clockticks6502 += 2; //check if jump crossed a page boundary else clockticks6502++; } } static void bcs() { if ((status & FLAG_CARRY) == FLAG_CARRY) { oldpc = pc; pc += reladdr; if ((oldpc & 0xFF00) != (pc & 0xFF00)) clockticks6502 += 2; //check if jump crossed a page boundary else clockticks6502++; } } static void beq() { if ((status & FLAG_ZERO) == FLAG_ZERO) { oldpc = pc; pc += reladdr; if ((oldpc & 0xFF00) != (pc & 0xFF00)) clockticks6502 += 2; //check if jump crossed a page boundary else clockticks6502++; } } static void bit() { value = getvalue(); result = (uint16_t)a & value; zerocalc(result); status = (status & 0x3F) | (uint8_t)(value & 0xC0); } static void bmi() { if ((status & FLAG_SIGN) == FLAG_SIGN) { oldpc = pc; pc += reladdr; if ((oldpc & 0xFF00) != (pc & 0xFF00)) clockticks6502 += 2; //check if jump crossed a page boundary else clockticks6502++; } } static void bne() { if ((status & FLAG_ZERO) == 0) { oldpc = pc; pc += reladdr; if ((oldpc & 0xFF00) != (pc & 0xFF00)) clockticks6502 += 2; //check if jump crossed a page boundary else clockticks6502++; } } static void bpl() { if ((status & FLAG_SIGN) == 0) { oldpc = pc; pc += reladdr; if ((oldpc & 0xFF00) != (pc & 0xFF00)) clockticks6502 += 2; //check if jump crossed a page boundary else clockticks6502++; } } static void brk() { pc++; push16(pc); //push next instruction address onto stack push8(status | FLAG_BREAK); //push CPU status to stack setinterrupt(); //set interrupt flag pc = (uint16_t)read6502(0xFFFE) | ((uint16_t)read6502(0xFFFF) << 8); } static void bvc() { if ((status & FLAG_OVERFLOW) == 0) { oldpc = pc; pc += reladdr; if ((oldpc & 0xFF00) != (pc & 0xFF00)) clockticks6502 += 2; //check if jump crossed a page boundary else clockticks6502++; } } static void bvs() { if ((status & FLAG_OVERFLOW) == FLAG_OVERFLOW) { oldpc = pc; pc += reladdr; if ((oldpc & 0xFF00) != (pc & 0xFF00)) clockticks6502 += 2; //check if jump crossed a page boundary else clockticks6502++; } } static void clc() { clearcarry(); } static void cld() { cleardecimal(); } static void cli() { clearinterrupt(); } static void clv() { clearoverflow(); } static void cmp() { penaltyop = 1; value = getvalue(); result = (uint16_t)a - value; if (a >= (uint8_t)(value & 0x00FF)) setcarry(); else clearcarry(); if (a == (uint8_t)(value & 0x00FF)) setzero(); else clearzero(); signcalc(result); } static void cpx() { value = getvalue(); result = (uint16_t)x - value; if (x >= (uint8_t)(value & 0x00FF)) setcarry(); else clearcarry(); if (x == (uint8_t)(value & 0x00FF)) setzero(); else clearzero(); signcalc(result); } static void cpy() { value = getvalue(); result = (uint16_t)y - value; if (y >= (uint8_t)(value & 0x00FF)) setcarry(); else clearcarry(); if (y == (uint8_t)(value & 0x00FF)) setzero(); else clearzero(); signcalc(result); } static void dec() { value = getvalue(); result = value - 1; zerocalc(result); signcalc(result); putvalue(result); } static void dex() { x--; zerocalc(x); signcalc(x); } static void dey() { y--; zerocalc(y); signcalc(y); } static void eor() { penaltyop = 1; value = getvalue(); result = (uint16_t)a ^ value; zerocalc(result); signcalc(result); saveaccum(result); } static void inc() { value = getvalue(); result = value + 1; zerocalc(result); signcalc(result); putvalue(result); } static void inx() { x++; zerocalc(x); signcalc(x); } static void iny() { y++; zerocalc(y); signcalc(y); } static void jmp() { pc = ea; } static void jsr() { push16(pc - 1); pc = ea; } static void lda() { penaltyop = 1; value = getvalue(); a = (uint8_t)(value & 0x00FF); zerocalc(a); signcalc(a); } static void ldx() { penaltyop = 1; value = getvalue(); x = (uint8_t)(value & 0x00FF); zerocalc(x); signcalc(x); } static void ldy() { penaltyop = 1; value = getvalue(); y = (uint8_t)(value & 0x00FF); zerocalc(y); signcalc(y); } static void lsr() { value = getvalue(); result = value >> 1; if (value & 1) setcarry(); else clearcarry(); zerocalc(result); signcalc(result); putvalue(result); } static void nop() { switch (opcode) { case 0x1C: case 0x3C: case 0x5C: case 0x7C: case 0xDC: case 0xFC: penaltyop = 1; break; } } static void ora() { penaltyop = 1; value = getvalue(); result = (uint16_t)a | value; zerocalc(result); signcalc(result); saveaccum(result); } static void pha() { push8(a); } static void php() { push8(status | FLAG_BREAK); } static void pla() { a = pull8(); zerocalc(a); signcalc(a); } static void plp() { status = pull8() | FLAG_CONSTANT; } static void rol() { value = getvalue(); result = (value << 1) | (status & FLAG_CARRY); carrycalc(result); zerocalc(result); signcalc(result); putvalue(result); } static void ror() { value = getvalue(); result = (value >> 1) | ((status & FLAG_CARRY) << 7); if (value & 1) setcarry(); else clearcarry(); zerocalc(result); signcalc(result); putvalue(result); } static void rti() { status = pull8(); value = pull16(); pc = value; } static void rts() { value = pull16(); pc = value + 1; } static void sbc() { penaltyop = 1; value = getvalue() ^ 0x00FF; result = (uint16_t)a + value + (uint16_t)(status & FLAG_CARRY); carrycalc(result); zerocalc(result); overflowcalc(result, a, value); signcalc(result); #ifndef NES_CPU if (status & FLAG_DECIMAL) { clearcarry(); a -= 0x66; if ((a & 0x0F) > 0x09) { a += 0x06; } if ((a & 0xF0) > 0x90) { a += 0x60; setcarry(); } clockticks6502++; } #endif saveaccum(result); } static void sec() { setcarry(); } static void sed() { setdecimal(); } static void sei() { setinterrupt(); } static void sta() { putvalue(a); } static void stx() { putvalue(x); } static void sty() { putvalue(y); } static void tax() { x = a; zerocalc(x); signcalc(x); } static void tay() { y = a; zerocalc(y); signcalc(y); } static void tsx() { x = sp; zerocalc(x); signcalc(x); } static void txa() { a = x; zerocalc(a); signcalc(a); } static void txs() { sp = x; } static void tya() { a = y; zerocalc(a); signcalc(a); } //undocumented instructions #ifdef UNDOCUMENTED static void lax() { lda(); ldx(); } static void sax() { sta(); stx(); putvalue(a & x); if (penaltyop && penaltyaddr) clockticks6502--; } static void dcp() { dec(); cmp(); if (penaltyop && penaltyaddr) clockticks6502--; } static void isb() { inc(); sbc(); if (penaltyop && penaltyaddr) clockticks6502--; } static void slo() { asl(); ora(); if (penaltyop && penaltyaddr) clockticks6502--; } static void rla() { rol(); and(); if (penaltyop && penaltyaddr) clockticks6502--; } static void sre() { lsr(); eor(); if (penaltyop && penaltyaddr) clockticks6502--; } static void rra() { ror(); adc(); if (penaltyop && penaltyaddr) clockticks6502--; } #else #define lax nop #define sax nop #define dcp nop #define isb nop #define slo nop #define rla nop #define sre nop #define rra nop #endif static void (*addrtable[256])() = { /* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | */ /* 0 */ imp, indx, imp, indx, zp, zp, zp, zp, imp, imm, acc, imm, abso, abso, abso, abso, /* 0 */ /* 1 */ rel, indy, imp, indy, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, /* 1 */ /* 2 */ abso, indx, imp, indx, zp, zp, zp, zp, imp, imm, acc, imm, abso, abso, abso, abso, /* 2 */ /* 3 */ rel, indy, imp, indy, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, /* 3 */ /* 4 */ imp, indx, imp, indx, zp, zp, zp, zp, imp, imm, acc, imm, abso, abso, abso, abso, /* 4 */ /* 5 */ rel, indy, imp, indy, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, /* 5 */ /* 6 */ imp, indx, imp, indx, zp, zp, zp, zp, imp, imm, acc, imm, ind, abso, abso, abso, /* 6 */ /* 7 */ rel, indy, imp, indy, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, /* 7 */ /* 8 */ imm, indx, imm, indx, zp, zp, zp, zp, imp, imm, imp, imm, abso, abso, abso, abso, /* 8 */ /* 9 */ rel, indy, imp, indy, zpx, zpx, zpy, zpy, imp, absy, imp, absy, absx, absx, absy, absy, /* 9 */ /* A */ imm, indx, imm, indx, zp, zp, zp, zp, imp, imm, imp, imm, abso, abso, abso, abso, /* A */ /* B */ rel, indy, imp, indy, zpx, zpx, zpy, zpy, imp, absy, imp, absy, absx, absx, absy, absy, /* B */ /* C */ imm, indx, imm, indx, zp, zp, zp, zp, imp, imm, imp, imm, abso, abso, abso, abso, /* C */ /* D */ rel, indy, imp, indy, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx, /* D */ /* E */ imm, indx, imm, indx, zp, zp, zp, zp, imp, imm, imp, imm, abso, abso, abso, abso, /* E */ /* F */ rel, indy, imp, indy, zpx, zpx, zpx, zpx, imp, absy, imp, absy, absx, absx, absx, absx /* F */ }; static void (*optable[256])() = { /* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | */ /* 0 */ brk, ora, nop, slo, nop, ora, asl, slo, php, ora, asl, nop, nop, ora, asl, slo, /* 0 */ /* 1 */ bpl, ora, nop, slo, nop, ora, asl, slo, clc, ora, nop, slo, nop, ora, asl, slo, /* 1 */ /* 2 */ jsr, and, nop, rla, bit, and, rol, rla, plp, and, rol, nop, bit, and, rol, rla, /* 2 */ /* 3 */ bmi, and, nop, rla, nop, and, rol, rla, sec, and, nop, rla, nop, and, rol, rla, /* 3 */ /* 4 */ rti, eor, nop, sre, nop, eor, lsr, sre, pha, eor, lsr, nop, jmp, eor, lsr, sre, /* 4 */ /* 5 */ bvc, eor, nop, sre, nop, eor, lsr, sre, cli, eor, nop, sre, nop, eor, lsr, sre, /* 5 */ /* 6 */ rts, adc, nop, rra, nop, adc, ror, rra, pla, adc, ror, nop, jmp, adc, ror, rra, /* 6 */ /* 7 */ bvs, adc, nop, rra, nop, adc, ror, rra, sei, adc, nop, rra, nop, adc, ror, rra, /* 7 */ /* 8 */ nop, sta, nop, sax, sty, sta, stx, sax, dey, nop, txa, nop, sty, sta, stx, sax, /* 8 */ /* 9 */ bcc, sta, nop, nop, sty, sta, stx, sax, tya, sta, txs, nop, nop, sta, nop, nop, /* 9 */ /* A */ ldy, lda, ldx, lax, ldy, lda, ldx, lax, tay, lda, tax, nop, ldy, lda, ldx, lax, /* A */ /* B */ bcs, lda, nop, lax, ldy, lda, ldx, lax, clv, lda, tsx, lax, ldy, lda, ldx, lax, /* B */ /* C */ cpy, cmp, nop, dcp, cpy, cmp, dec, dcp, iny, cmp, dex, nop, cpy, cmp, dec, dcp, /* C */ /* D */ bne, cmp, nop, dcp, nop, cmp, dec, dcp, cld, cmp, nop, dcp, nop, cmp, dec, dcp, /* D */ /* E */ cpx, sbc, nop, isb, cpx, sbc, inc, isb, inx, sbc, nop, sbc, cpx, sbc, inc, isb, /* E */ /* F */ beq, sbc, nop, isb, nop, sbc, inc, isb, sed, sbc, nop, isb, nop, sbc, inc, isb /* F */ }; static const uint32_t ticktable[256] = { /* | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | */ /* 0 */ 7, 6, 2, 8, 3, 3, 5, 5, 3, 2, 2, 2, 4, 4, 6, 6, /* 0 */ /* 1 */ 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* 1 */ /* 2 */ 6, 6, 2, 8, 3, 3, 5, 5, 4, 2, 2, 2, 4, 4, 6, 6, /* 2 */ /* 3 */ 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* 3 */ /* 4 */ 6, 6, 2, 8, 3, 3, 5, 5, 3, 2, 2, 2, 3, 4, 6, 6, /* 4 */ /* 5 */ 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* 5 */ /* 6 */ 6, 6, 2, 8, 3, 3, 5, 5, 4, 2, 2, 2, 5, 4, 6, 6, /* 6 */ /* 7 */ 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* 7 */ /* 8 */ 2, 6, 2, 6, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, /* 8 */ /* 9 */ 2, 6, 2, 6, 4, 4, 4, 4, 2, 5, 2, 5, 5, 5, 5, 5, /* 9 */ /* A */ 2, 6, 2, 6, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, /* A */ /* B */ 2, 5, 2, 5, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, /* B */ /* C */ 2, 6, 2, 8, 3, 3, 5, 5, 2, 2, 2, 2, 4, 4, 6, 6, /* C */ /* D */ 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7, /* D */ /* E */ 2, 6, 2, 8, 3, 3, 5, 5, 2, 2, 2, 2, 4, 4, 6, 6, /* E */ /* F */ 2, 5, 2, 8, 4, 4, 6, 6, 2, 4, 2, 7, 4, 4, 7, 7 /* F */ }; void nmi6502() { push16(pc); push8(status); status |= FLAG_INTERRUPT; pc = (uint16_t)read6502(0xFFFA) | ((uint16_t)read6502(0xFFFB) << 8); } void irq6502() { push16(pc); push8(status); status |= FLAG_INTERRUPT; pc = (uint16_t)read6502(0xFFFE) | ((uint16_t)read6502(0xFFFF) << 8); } uint8_t callexternal = 0; void (*loopexternal)(); void exec6502(uint32_t tickcount) { clockgoal6502 += tickcount; while (clockticks6502 < clockgoal6502) { opcode = read6502(pc++); penaltyop = 0; penaltyaddr = 0; (*addrtable[opcode])(); (*optable[opcode])(); clockticks6502 += ticktable[opcode]; if (penaltyop && penaltyaddr) clockticks6502++; instructions++; if (callexternal) (*loopexternal)(); } } void step6502() { opcode = read6502(pc++); penaltyop = 0; penaltyaddr = 0; (*addrtable[opcode])(); (*optable[opcode])(); clockticks6502 += ticktable[opcode]; if (penaltyop && penaltyaddr) clockticks6502++; clockgoal6502 = clockticks6502; instructions++; if (callexternal) (*loopexternal)(); } void hookexternal(void *funcptr) { if (funcptr != (void *)NULL) { loopexternal = funcptr; callexternal = 1; } else callexternal = 0; } 

Comentários

  • Para sua informação, se você usar o método de marcação de código (recuar quatro espaços), ele ficará em uma região rolável do tamanho da tela; e você não ‘ não precisa html-ize < colchetes de tag >. … Mas para esta resposta, eu realmente acho que ‘ é melhor do jeito que está. Como uma implementação de referência, ela coloca o espaço que ocupa em um uso muito bom. … Se / quando mais respostas chegarem, você pode mudar para o recuo de 4 espaços para que não ‘ domine a página. $ 0,02 … Adorei a pergunta … +1 +1 +1! Eu ‘ estou trabalhando no meu, não ‘ não se preocupe! 🙂

Resposta

Um emulador MOS 6502 em Haskell. Os recursos incluem:

  • implementação de precisão de bits, incluindo manuseio sutil de registro P e quebra de página durante a indexação e indireção
  • IO mapeada de memória, com detecção de loop de rotação (para que a CPU do host não peg enquanto espera pela entrada)
  • interromper a detecção (pula / ramifica para o próprio)
  • CPU implementada em exatamente 200 linhas & 6502 caracteres de código
  • implementação de CPU é mônada de estado puro

Esta é uma versão um tanto “d golfe” de uma implementação completa (com mais recursos) que fiz para este desafio que eu ” Postarei mais tarde. Apesar do golfe, o código ainda é direto. O único recurso ausente conhecido é o modo BCD (chegando …)

Executa o código ehBASIC:

& ghc -O2 -o z6502min -Wall -fwarn-tabs -fno-warn-missing-signatures Z6502.hs [1 of 1] Compiling Main ( Z6502.hs, Z6502.o ) Z6502.hs:173:1: Warning: Defined but not used: `nmi" Z6502.hs:174:1: Warning: Defined but not used: `irq" Linking z6502min ... & ./z6502min ehbasic.bin 6502 EhBASIC [C]old/[W]arm ? Memory size ? 48383 Bytes free Enhanced BASIC 2.22 Ready PRINT "Hello World" Hello World Ready 10 FOR I = 1 TO 10 20 FOR J = 1 TO I 30 PRINT J; 40 NEXT J 50 PRINT 60 NEXT I RUN 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 Ready 

E o código, com menos de 300 linhas no total:

-- Z6502: a 6502 emulator -- by Mark Lentczner module Main (main) where import Control.Applicative import Control.Monad import Control.Monad.State.Strict import Data.Bits import qualified Data.ByteString as B import Data.List import qualified Data.Vector as V import qualified Data.Vector.Unboxed as VU import Data.Word import System.Environment import System.IO {- === CPU: 200 lines, 6502 characters === -} type Addr = Word16 toAd = fromIntegral :: Int -> Addr addr :: Word8 -> Word8 -> Addr addr lo hi = fromIntegral hi `shiftL` 8 .|. fromIntegral lo lohi ad = (fromIntegral ad, fromIntegral $ ad `shiftR` 8) zeroPage v = addr v 0 index ad idx = ad + fromIntegral (idx :: Word8) relativeAddr ad off = index ad off - if off > 0x7f then 256 else 0 data Page = Missing | ROM !B.ByteString | RAM !(VU.Vector Word8) type Memory = V.Vector Page emptyMemory = V.replicate 256 Missing fetchByte ad mv = case mv V.! hi of ROM bs -> B.index bs lo RAM vs -> vs VU.! lo _ -> 0 where (hi,lo) = fromIntegral ad `divMod` 256 storeByte ad v mv = case mv V.! hi of RAM vs -> mv V.// [(hi, RAM $ vs VU.// [(lo, v)])] _ -> mv where (hi,lo) = fromIntegral ad `divMod` 256 data S = S { rA, rX, rY, rP, rS :: !Word8, rPC :: !Addr , mem :: !Memory, busR,busW :: Maybe Addr } powerOnState = S 0 0 0 0 0 0 emptyMemory Nothing Nothing [bitN, bitV, bitX, bitB, bitD, bitI, bitZ, bitC] = [7,6..0] toBit b t v = (if t then setBit else clearBit) v b toZ v = toBit bitZ (v == 0) toZN v = toBit bitZ (v == 0) . toBit bitN (testBit v 7) to67 v = toBit bitV (testBit v 6) . toBit bitN (testBit v 7) setZN v = modify $ \s -> s { rP = toZN v $ rP s } setAZN v = modify $ \s -> s { rA = v, rP=toZN v $ rP s } setXZN v = modify $ \s -> s { rX = v, rP=toZN v $ rP s } setYZN v = modify $ \s -> s { rY = v, rP=toZN v $ rP s } setZVNbit (a,v) = modify $ \s -> s { rP = toZ (a .&. v) $ to67 v $ rP s } setACZVN (c,v,a) = modify $ \s -> s { rA = a, rP = toBit bitC c $ toBit bitV v $ toZN a $ rP s } setCZN (c,v) = modify $ \s -> s { rP = toBit bitC c $ toZN v $ rP s } fetch a = state $ \s -> (fetchByte a $ mem s, s { busR = Just a }) fetchIndirectAddr a0 = do m <- gets mem let (lo,hi) = lohi a0 a1 = addr (lo+1) hi bLo = fetchByte a0 m bHi = fetchByte a1 m return $ addr bLo bHi store a v = modify $ \s -> s { mem = storeByte a v $ mem s, busW = Just a } clearBus = modify $ \s -> s { busR = Nothing, busW = Nothing } nextPC = state $ \s -> (rPC s, s { rPC = rPC s + 1 }) fetchPC = nextPC >>= \a -> gets mem >>= return . fetchByte a adjSP n m = state $ \s -> (addr (rS s + m) 1, s { rS = rS s + n }) push v = adjSP (-1) 0 >>= flip store v pull = adjSP 1 1 >>= fetch pushAddr a = let (lo, hi) = lohi a in push hi >> push lo pullAddr = addr <$> pull <*> pull pushP fromSW = gets rP >>= push . toBit bitX True . toBit bitB fromSW pullP = pull >>= \v -> modify $ \s -> s { rP = v .&. 0xCF } indexX a = gets rX >>= return . index a indexY a = gets rY >>= return . index a aImm=nextPC aZero=zeroPage<$>fetchPC aZeroX=zeroPage<$>((+)<$>fetchPC<*>gets rX) aZeroY=zeroPage<$>((+)<$>fetchPC<*>gets rY) aRel=flip relativeAddr<$>fetchPC<*>gets rPC aAbs=addr<$>fetchPC<*>fetchPC aAbsX=aAbs>>=indexX aAbsY=aAbs>>=indexY aInd=aAbs>>=fetchIndirectAddr aIndIdx=aZeroX>>=fetchIndirectAddr aIdxInd=aZero>>=fetchIndirectAddr>>=indexY decode = V.fromList $ concat $ transpose [[iBRK,iBPL,iJSR&aAbs,iBMI,iRTI,iBVC,iRTS,iBVS ,iErr,iBCC,iLDY&aImm,iBCS,iCPY&aImm,iBNE,iCPX&aImm,iBEQ] ,cAlu aIndIdx aIdxInd ,cErr//(10,iLDX&aImm) ,cErr ,[iErr,iErr,iBIT&aZero,iErr,iErr,iErr,iErr,iErr ,iSTY&aZero,iSTY&aZeroX,iLDY&aZero,iLDY&aZeroX,iCPY&aZero,iErr,iCPX&aZero,iErr] ,cAlu aZero aZeroX ,cBit aZero aZeroX//(9,iSTX&aZeroY)//(11,iLDX&aZeroY) ,cErr ,[iPHP,iCLC,iPLP,iSEC,iPHA,iCLI,iPLA,iSEI,iDEY,iTYA,iTAY,iCLV,iINY,iCLD,iINX,iSED] ,cAlu aImm aAbsY//(8,iErr) ,[iASLa,iErr,iROLa,iErr,iLSRa,iErr,iRORa,iErr ,iTXA,iTXS,iTAX,iTSX,iDEX,iErr,iNOP,iErr ] ,cErr ,[iErr,iErr,iBIT&aAbs,iErr,iJMP&aAbs,iErr,iJMP&aInd,iErr ,iSTY&aAbs,iErr,iLDY&aAbs,iLDY&aAbsX,iCPY&aAbs,iErr,iCPX&aAbs,iErr] ,cAlu aAbs aAbsX ,cBit aAbs aAbsX//(9,iErr)//(11,iLDX&aAbsY) ,cErr ] cAlt is e o = is >>= (\i->[i&e,i&o]) cAlu = cAlt [iORA,iAND,iEOR,iADC,iSTA,iLDA,iCMP,iSBC] cBit = cAlt [iASL,iROL,iLSR,iROR,iSTX,iLDX,iDEC,iINC] cErr = replicate 16 iErr is//(n,j) = let (f,_:h) = splitAt n is in f++j:h i&a=a>>=i loadIns l a = fetch a >>= l storeIns f a = f >>= store a aluIns set op ad = do v <- fetch ad a <- gets rA set $ op a v modIns op a = fetch a >>= op >>= store a modAccIns op = gets rA >>= op >>= \v -> modify $ \s -> s { rA = v } stIns b op = modify $ \s -> s { rP = op (rP s) b } jump a = modify $ \s -> s { rPC = a } brIns b t = do a <- aRel p <- gets rP when (testBit p b == t) $ jump a adcOp a b cIn = (cOut, v, s) where h = b + (if cIn then 1 else 0) s = a + h cOut = h < b || s < a v = testBit (a `xor` s .&. b `xor` s) 7 sbcOp a b cIn = adcOp a (complement b) cIn carryOp f = gets rP >>= setACZVN . f . flip testBit bitC cmpOp a b = (a >= b, a - b) shiftOp shifter isRot inBit outBit v = do s <- get let newC = testBit v outBit bitIn = toBit inBit $ isRot && testBit (rP s) bitC v" = bitIn $ shifter v 1 put s { rP = toBit bitC newC $ toZN v" $ rP s } return v" vector a = fetchIndirectAddr a >>= jump interrupt isBrk pcOffset a = do gets rPC >>= pushAddr . flip index pcOffset pushP isBrk iSEI vector a reset = vector $ toAd 0xFFFC nmi = interrupt False 0 $ toAd 0xFFFA irq = interrupt False 0 $ toAd 0xFFFE [iORA,iAND,iEOR]=aluIns setAZN<$>[(.|.),(.&.),xor] [iADC,iSBC]=aluIns carryOp<$>[adcOp,sbcOp] iSTA=storeIns$gets rA iLDA=loadIns setAZN iCMP=aluIns setCZN cmpOp [iSTX,iSTY]=storeIns.gets<$>[rX,rY] [iLDX,iLDY]=loadIns<$>[setXZN,setYZN] [iCPX,iCPY]=(\r a->gets r>>= \v->fetch a>>=setCZN.cmpOp v)<$>[rX,rY] [iDEC,iINC]=modIns.(\i v->setZN(v+i)>>return(v+i))<$>[-1,1] [iDEX,iINX]=(gets rX>>=).(setXZN.).(+)<$>[-1,1] [iDEY,iINY]=(gets rY>>=).(setYZN.).(+)<$>[-1,1] shOps=[shiftOp d r b(7-b)|(d,b)<-[(shiftL,0),(shiftR,7)],r<-[False,True]] [iASL,iROL,iLSR,iROR]=modIns<$>shOps [iASLa,iROLa,iLSRa,iRORa]=modAccIns<$>shOps iBIT=aluIns setZVNbit(,) iJMP=jump [iBPL,iBMI,iBVC,iBVS,iBCC,iBCS,iBNE,iBEQ]=brIns<$>[bitN,bitV,bitC,bitZ]<*>[False,True] [iCLC,iSEC,iCLI,iSEI,iCLV,_,iCLD,iSED]=stIns<$>[bitC,bitI,bitV,bitD]<*>[clearBit,setBit] iBRK=interrupt True 1 $ toAd 0xFFFE iJSR a=gets rPC>>=pushAddr.(-1+)>>jump a iRTI=iPLP>>pullAddr>>=jump iRTS=pullAddr>>=jump.(1+) iPHP=pushP True iPLP=pullP iPHA=gets rA>>=push iPLA=pull>>=setAZN iNOP=return () [iTAX,iTAY]=(gets rA>>=)<$>[setXZN,setYZN] [iTXA,iTYA]=(>>=setAZN).gets<$>[rX,rY] iTXS=modify $ \s -> s { rS=rX s } iTSX=gets rS>>=setXZN iErr=gets rPC>>=jump.(-1+) executeOne = clearBus >> fetchPC >>= (decode V.!) . fromIntegral {- === END OF CPU === -} {- === MOTHERBOARD === -} buildMemory rom = loadRAM 0xF0 1 $ loadRAM 0x00 ramSize $ loadROM romStart rom $ emptyMemory where ramSize = 256 - (B.length rom `div` 256) romStart = fromIntegral ramSize loadRAM p0 n = (V.// zip [p0..] (map RAM $ replicate n ramPage)) ramPage = VU.replicate 256 0 loadROM p0 bs = (V.// zip [p0..] (map ROM $ romPages bs)) romPages b = case B.length b of l | l == 0 -> [] | l < 256 -> [b `B.append` B.replicate (256 - l) 0] | l == 256 -> [b] | otherwise -> let (b0,bn) = B.splitAt 256 b in b0 : romPages bn main = getArgs >>= go where go [romFile] = B.readFile romFile >>= exec . buildState . buildMemory go _ = putStrLn "agument should be a single ROM file" buildState m = execState reset (powerOnState { mem = m }) exec s0 = do stopIO <- startIO loop (0 :: Int) s0 stopIO loop n s = do let pcsp = (rPC s, rS s) (n",s") <- processIO n (execState executeOne s) let pcsp" = (rPC s", rS s") if pcsp /= pcsp" then (loop $! n") $! s" else do putStrLn $ "Execution snagged at " ++ show (fst pcsp") startIO = do ibuf <- hGetBuffering stdin obuf <- hGetBuffering stdout iecho <- hGetEcho stdin hSetBuffering stdin NoBuffering hSetBuffering stdout NoBuffering hSetEcho stdin False return $ do hSetEcho stdin iecho hSetBuffering stdin ibuf hSetBuffering stdout obuf putStr "\n\n" processIO n s = do when (busW s == Just outPortAddr) $ do let c = fetchByte outPortAddr $ mem s when (c /= 0) $ hPutChar stdout $ toEnum $ fromIntegral c if (busR s == Just inPortAddr) then do r <- if n < 16 then hWaitForInput stdin 50 else hReady stdin c <- if r then (fromIntegral . fromEnum) <$> hGetChar stdin else return 0 let c" = if c == 0xA then 0xD else c let s" = s { mem = storeByte inPortAddr c" $ mem s } return (0,s") else return (n+1,s) inPortAddr = toAd 0xF004 outPortAddr = toAd 0xF001 

Comentários

  • Bom trabalho! Muito pequeno. Não ‘ conheço Haskell, talvez devesse aprender. Adoro o fato de que s 6502 caracteres. 🙂

Resposta

Para qualquer pessoa interessada, pensei em compartilhar minha implementação do 6502 em C #. Tal como acontece com outras postagens aqui, não é totalmente jogado, mas é uma implementação completa do recurso.

  • Suporta NMOS e CMOS
  • Inclui vários programas de teste, incluindo o teste AllSuite acima como testes de unidade.
  • Suporta BCD

Comecei este projeto criando uma planilha de instruções quando estava aprendendo sobre a CPU. Percebi que poderia usar essa planilha para economizar um pouco de digitação. Transformei isso em uma tabela de arquivo de texto que o emulador carrega para ajudar a contar os ciclos e para facilitar a saída da desmontagem.

O projeto inteiro está disponível no Github https://github.com/amensch/e6502

/* * e6502: A complete 6502 CPU emulator. * Copyright 2016 Adam Mensch */ using System; namespace e6502CPU { public enum e6502Type { CMOS, NMOS }; public class e6502 { // Main Register public byte A; // Index Registers public byte X; public byte Y; // Program Counter public ushort PC; // Stack Pointer // Memory location is hard coded to 0x01xx // Stack is descending (decrement on push, increment on pop) // 6502 is an empty stack so SP points to where next value is stored public byte SP; // Status Registers (in order bit 7 to 0) public bool NF; // negative flag (N) public bool VF; // overflow flag (V) // bit 5 is unused // bit 4 is the break flag however it is not a physical flag in the CPU public bool DF; // binary coded decimal flag (D) public bool IF; // interrupt flag (I) public bool ZF; // zero flag (Z) public bool CF; // carry flag (C) // RAM - 16 bit address bus means 64KB of addressable memory public byte[] memory; // List of op codes and their attributes private OpCodeTable _opCodeTable; // The current opcode private OpCodeRecord _currentOP; // Clock cycles to adjust due to page boundaries being crossed, branches taken, or NMOS/CMOS differences private int _extraCycles; // Flag for hardware interrupt (IRQ) public bool IRQWaiting { get; set; } // Flag for non maskable interrupt (NMI) public bool NMIWaiting { get; set; } public e6502Type _cpuType { get; set; } public e6502(e6502Type type) { memory = new byte[0x10000]; _opCodeTable = new OpCodeTable(); // Set these on instantiation so they are known values when using this object in testing. // Real programs should explicitly load these values before using them. A = 0; X = 0; Y = 0; SP = 0; PC = 0; NF = false; VF = false; DF = false; IF = true; ZF = false; CF = false; NMIWaiting = false; IRQWaiting = false; _cpuType = type; } public void Boot() { // On reset the addresses 0xfffc and 0xfffd are read and PC is loaded with this value. // It is expected that the initial program loaded will have these values set to something. // Most 6502 systems contain ROM in the upper region (around 0xe000-0xffff) PC = GetWordFromMemory(0xfffc); // interrupt disabled is set on powerup IF = true; NMIWaiting = false; IRQWaiting = false; } public void LoadProgram(ushort startingAddress, byte[] program) { program.CopyTo(memory, startingAddress); PC = startingAddress; } public string DasmNextInstruction() { OpCodeRecord oprec = _opCodeTable.OpCodes[ memory[PC] ]; if (oprec.Bytes == 3) return oprec.Dasm( GetImmWord() ); else return oprec.Dasm( GetImmByte() ); } // returns # of clock cycles needed to execute the instruction public int ExecuteNext() { _extraCycles = 0; // Check for non maskable interrupt (has higher priority over IRQ) if (NMIWaiting) { DoIRQ(0xfffa); NMIWaiting = false; _extraCycles += 6; } // Check for hardware interrupt, if enabled else if (!IF) { if(IRQWaiting) { DoIRQ(0xfffe); IRQWaiting = false; _extraCycles += 6; } } _currentOP = _opCodeTable.OpCodes[memory[PC]]; ExecuteInstruction(); return _currentOP.Cycles + _extraCycles; } private void ExecuteInstruction() { int result; int oper = GetOperand(_currentOP.AddressMode); switch (_currentOP.OpCode) { // ADC - add memory to accumulator with carry // A+M+C -> A,C (NZCV) case 0x61: case 0x65: case 0x69: case 0x6d: case 0x71: case 0x72: case 0x75: case 0x79: case 0x7d: if (DF) { result = HexToBCD(A) + HexToBCD((byte)oper); if (CF) result++; CF = (result > 99); if (result > 99 ) { result -= 100; } ZF = (result == 0); // convert decimal result to hex BCD result A = BCDToHex(result); // Unlike ZF and CF, the NF flag represents the MSB after conversion // to BCD. NF = (A > 0x7f); // extra clock cycle on CMOS in decimal mode if (_cpuType == e6502Type.CMOS) _extraCycles++; } else { ADC((byte)oper); } PC += _currentOP.Bytes; break; // AND - and memory with accumulator // A AND M -> A (NZ) case 0x21: case 0x25: case 0x29: case 0x2d: case 0x31: case 0x32: case 0x35: case 0x39: case 0x3d: result = A & oper; NF = ((result & 0x80) == 0x80); ZF = ((result & 0xff) == 0x00); A = (byte)result; PC += _currentOP.Bytes; break; // ASL - shift left one bit (NZC) // C <- (76543210) <- 0 case 0x06: case 0x16: case 0x0a: case 0x0e: case 0x1e: // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed) if (_currentOP.OpCode == 0x1e && _cpuType == e6502Type.CMOS) _extraCycles--; // shift bit 7 into carry CF = (oper >= 0x80); // shift operand result = oper << 1; NF = ((result & 0x80) == 0x80); ZF = ((result & 0xff) == 0x00); SaveOperand(_currentOP.AddressMode, result); PC += _currentOP.Bytes; break; // BBRx - test bit in memory (no flags) // Test the zero page location and branch of the specified bit is clear // These instructions are only available on Rockwell and WDC 65C02 chips. // Number of clock cycles is the same regardless if the branch is taken. case 0x0f: case 0x1f: case 0x2f: case 0x3f: case 0x4f: case 0x5f: case 0x6f: case 0x7f: // upper nibble specifies the bit to check byte check_bit = (byte)(_currentOP.OpCode >> 4); byte check_value = 0x01; for( int ii=0; ii < check_bit; ii++) { check_value = (byte)(check_value << 1); } // if the specified bit is 0 then branch byte offset = memory[PC + 2]; PC += _currentOP.Bytes; if ((oper & check_value) == 0x00) PC += offset; break; // BBSx - test bit in memory (no flags) // Test the zero page location and branch of the specified bit is set // These instructions are only available on Rockwell and WDC 65C02 chips. // Number of clock cycles is the same regardless if the branch is taken. case 0x8f: case 0x9f: case 0xaf: case 0xbf: case 0xcf: case 0xdf: case 0xef: case 0xff: // upper nibble specifies the bit to check (but ignore bit 7) check_bit = (byte)((_currentOP.OpCode & 0x70) >> 4); check_value = 0x01; for (int ii = 0; ii < check_bit; ii++) { check_value = (byte)(check_value << 1); } // if the specified bit is 1 then branch offset = memory[PC + 2]; PC += _currentOP.Bytes; if ((oper & check_value) == check_value) PC += offset; break; // BCC - branch on carry clear case 0x90: PC += _currentOP.Bytes; CheckBranch(!CF, oper); break; // BCS - branch on carry set case 0xb0: PC += _currentOP.Bytes; CheckBranch(CF, oper); break; // BEQ - branch on zero case 0xf0: PC += _currentOP.Bytes; CheckBranch(ZF, oper); break; // BIT - test bits in memory with accumulator (NZV) // bits 7 and 6 of oper are transferred to bits 7 and 6 of conditional register (N and V) // the zero flag is set to the result of oper AND accumulator case 0x24: case 0x2c: // added by 65C02 case 0x34: case 0x3c: case 0x89: result = A & oper; // The WDC programming manual for 65C02 indicates NV are unaffected in immediate mode. // The extended op code test program reflects this. if (_currentOP.AddressMode != AddressModes.Immediate) { NF = ((oper & 0x80) == 0x80); VF = ((oper & 0x40) == 0x40); } ZF = ((result & 0xff) == 0x00); PC += _currentOP.Bytes; break; // BMI - branch on negative case 0x30: PC += _currentOP.Bytes; CheckBranch(NF, oper); break; // BNE - branch on non zero case 0xd0: PC += _currentOP.Bytes; CheckBranch(!ZF, oper); break; // BPL - branch on non negative case 0x10: PC += _currentOP.Bytes; CheckBranch(!NF, oper); break; // BRA - unconditional branch to immediate address // NOTE: In OpcodeList.txt the number of clock cycles is one less than the documentation. // This is because CheckBranch() adds one when a branch is taken, which in this case is always. case 0x80: PC += _currentOP.Bytes; CheckBranch(true, oper); break; // BRK - force break (I) case 0x00: // This is a software interrupt (IRQ). These events happen in a specific order. // Processor adds two to the current PC PC += 2; // Call IRQ routine DoIRQ(0xfffe, true); // Whether or not the decimal flag is cleared depends on the type of 6502 CPU. // The CMOS 65C02 clears this flag but the NMOS 6502 does not. if( _cpuType == e6502Type.CMOS ) DF = false; break; // BVC - branch on overflow clear case 0x50: PC += _currentOP.Bytes; CheckBranch(!VF, oper); break; // BVS - branch on overflow set case 0x70: PC += _currentOP.Bytes; CheckBranch(VF, oper); break; // CLC - clear carry flag case 0x18: CF = false; PC += _currentOP.Bytes; break; // CLD - clear decimal mode case 0xd8: DF = false; PC += _currentOP.Bytes; break; // CLI - clear interrupt disable bit case 0x58: IF = false; PC += _currentOP.Bytes; break; // CLV - clear overflow flag case 0xb8: VF = false; PC += _currentOP.Bytes; break; // CMP - compare memory with accumulator (NZC) // CMP, CPX and CPY are unsigned comparisions case 0xc5: case 0xc9: case 0xc1: case 0xcd: case 0xd1: case 0xd2: case 0xd5: case 0xd9: case 0xdd: byte temp = (byte)(A - oper); CF = A >= (byte)oper; ZF = A == (byte)oper; NF = ((temp & 0x80) == 0x80); PC += _currentOP.Bytes; break; // CPX - compare memory and X (NZC) case 0xe0: case 0xe4: case 0xec: temp = (byte)(X - oper); CF = X >= (byte)oper; ZF = X == (byte)oper; NF = ((temp & 0x80) == 0x80); PC += _currentOP.Bytes; break; // CPY - compare memory and Y (NZC) case 0xc0: case 0xc4: case 0xcc: temp = (byte)(Y - oper); CF = Y >= (byte)oper; ZF = Y == (byte)oper; NF = ((temp & 0x80) == 0x80); PC += _currentOP.Bytes; break; // DEC - decrement memory by 1 (NZ) case 0xc6: case 0xce: case 0xd6: case 0xde: // added by 65C02 case 0x3a: result = oper - 1; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); SaveOperand(_currentOP.AddressMode, result); PC += _currentOP.Bytes; break; // DEX - decrement X by one (NZ) case 0xca: result = X - 1; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); X = (byte)result; PC += _currentOP.Bytes; break; // DEY - decrement Y by one (NZ) case 0x88: result = Y - 1; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); Y = (byte)result; PC += _currentOP.Bytes; break; // EOR - XOR memory with accumulator (NZ) case 0x41: case 0x45: case 0x49: case 0x4d: case 0x51: case 0x52: case 0x55: case 0x59: case 0x5d: result = A ^ (byte)oper; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); A = (byte)result; PC += _currentOP.Bytes; break; // INC - increment memory by 1 (NZ) case 0xe6: case 0xee: case 0xf6: case 0xfe: // added by 65C02 case 0x1a: result = oper + 1; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); SaveOperand(_currentOP.AddressMode, result); PC += _currentOP.Bytes; break; // INX - increment X by one (NZ) case 0xe8: result = X + 1; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); X = (byte)result; PC += _currentOP.Bytes; break; // INY - increment Y by one (NZ) case 0xc8: result = Y + 1; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); Y = (byte)result; PC += _currentOP.Bytes; break; // JMP - jump to new location (two byte immediate) case 0x4c: case 0x6c: // added for 65C02 case 0x7c: if (_currentOP.AddressMode == AddressModes.Absolute) { PC = GetImmWord(); } else if (_currentOP.AddressMode == AddressModes.Indirect) { PC = (ushort)(GetWordFromMemory(GetImmWord())); } else if( _currentOP.AddressMode == AddressModes.AbsoluteX) { PC = GetWordFromMemory((GetImmWord() + X)); } else { throw new InvalidOperationException("This address mode is invalid with the JMP instruction"); } // CMOS fixes a bug in this op code which results in an extra clock cycle if (_currentOP.OpCode == 0x6c && _cpuType == e6502Type.CMOS) _extraCycles++; break; // JSR - jump to new location and save return address case 0x20: // documentation says push PC+2 even though this is a 3 byte instruction // When pulled via RTS 1 is added to the result Push((ushort)(PC+2)); PC = GetImmWord(); break; // LDA - load accumulator with memory (NZ) case 0xa1: case 0xa5: case 0xa9: case 0xad: case 0xb1: case 0xb2: case 0xb5: case 0xb9: case 0xbd: A = (byte)oper; ZF = ((A & 0xff) == 0x00); NF = ((A & 0x80) == 0x80); PC += _currentOP.Bytes; break; // LDX - load index X with memory (NZ) case 0xa2: case 0xa6: case 0xae: case 0xb6: case 0xbe: X = (byte)oper; ZF = ((X & 0xff) == 0x00); NF = ((X & 0x80) == 0x80); PC += _currentOP.Bytes; break; // LDY - load index Y with memory (NZ) case 0xa0: case 0xa4: case 0xac: case 0xb4: case 0xbc: Y = (byte)oper; ZF = ((Y & 0xff) == 0x00); NF = ((Y & 0x80) == 0x80); PC += _currentOP.Bytes; break; // LSR - shift right one bit (NZC) // 0 -> (76543210) -> C case 0x46: case 0x4a: case 0x4e: case 0x56: case 0x5e: // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed) if (_currentOP.OpCode == 0x5e && _cpuType == e6502Type.CMOS) _extraCycles--; // shift bit 0 into carry CF = ((oper & 0x01) == 0x01); // shift operand result = oper >> 1; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); SaveOperand(_currentOP.AddressMode, result); PC += _currentOP.Bytes; break; // NOP - no operation case 0xea: PC += _currentOP.Bytes; break; // ORA - OR memory with accumulator (NZ) case 0x01: case 0x05: case 0x09: case 0x0d: case 0x11: case 0x12: case 0x15: case 0x19: case 0x1d: result = A | (byte)oper; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); A = (byte)result; PC += _currentOP.Bytes; break; // PHA - push accumulator on stack case 0x48: Push(A); PC += _currentOP.Bytes; break; // PHP - push processor status on stack case 0x08: int sr = 0x00; if (NF) sr = sr | 0x80; if (VF) sr = sr | 0x40; sr = sr | 0x20; // bit 5 is always 1 sr = sr | 0x10; // bit 4 is always 1 for PHP if (DF) sr = sr | 0x08; if (IF) sr = sr | 0x04; if (ZF) sr = sr | 0x02; if (CF) sr = sr | 0x01; Push((byte)sr); PC += _currentOP.Bytes; break; // PHX - push X on stack case 0xda: Push(X); PC += _currentOP.Bytes; break; // PHY - push Y on stack case 0x5a: Push(Y); PC += _currentOP.Bytes; break; // PLA - pull accumulator from stack (NZ) case 0x68: A = PopByte(); NF = (A & 0x80) == 0x80; ZF = (A & 0xff) == 0x00; PC += _currentOP.Bytes; break; // PLP - pull status from stack case 0x28: sr = PopByte(); NF = (sr & 0x80) == 0x80; VF = (sr & 0x40) == 0x40; DF = (sr & 0x08) == 0x08; IF = (sr & 0x04) == 0x04; ZF = (sr & 0x02) == 0x02; CF = (sr & 0x01) == 0x01; PC += _currentOP.Bytes; break; // PLX - pull X from stack (NZ) case 0xfa: X = PopByte(); NF = (X & 0x80) == 0x80; ZF = (X & 0xff) == 0x00; PC += _currentOP.Bytes; break; // PLY - pull Y from stack (NZ) case 0x7a: Y = PopByte(); NF = (Y & 0x80) == 0x80; ZF = (Y & 0xff) == 0x00; PC += _currentOP.Bytes; break; // RMBx - clear bit in memory (no flags) // Clear the zero page location of the specified bit // These instructions are only available on Rockwell and WDC 65C02 chips. case 0x07: case 0x17: case 0x27: case 0x37: case 0x47: case 0x57: case 0x67: case 0x77: // upper nibble specifies the bit to check check_bit = (byte)(_currentOP.OpCode >> 4); check_value = 0x01; for (int ii = 0; ii < check_bit; ii++) { check_value = (byte)(check_value << 1); } check_value = (byte)~check_value; SaveOperand(_currentOP.AddressMode, oper & check_value); PC += _currentOP.Bytes; break; // SMBx - set bit in memory (no flags) // Set the zero page location of the specified bit // These instructions are only available on Rockwell and WDC 65C02 chips. case 0x87: case 0x97: case 0xa7: case 0xb7: case 0xc7: case 0xd7: case 0xe7: case 0xf7: // upper nibble specifies the bit to check (but ignore bit 7) check_bit = (byte)((_currentOP.OpCode & 0x70) >> 4); check_value = 0x01; for (int ii = 0; ii < check_bit; ii++) { check_value = (byte)(check_value << 1); } SaveOperand(_currentOP.AddressMode, oper | check_value); PC += _currentOP.Bytes; break; // ROL - rotate left one bit (NZC) // C <- 76543210 <- C case 0x26: case 0x2a: case 0x2e: case 0x36: case 0x3e: // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed) if (_currentOP.OpCode == 0x3e && _cpuType == e6502Type.CMOS) _extraCycles--; // perserve existing cf value bool old_cf = CF; // shift bit 7 into carry flag CF = (oper >= 0x80); // shift operand result = oper << 1; // old carry flag goes to bit zero if (old_cf) result = result | 0x01; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); SaveOperand(_currentOP.AddressMode, result); PC += _currentOP.Bytes; break; // ROR - rotate right one bit (NZC) // C -> 76543210 -> C case 0x66: case 0x6a: case 0x6e: case 0x76: case 0x7e: // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed) if (_currentOP.OpCode == 0x7e && _cpuType == e6502Type.CMOS) _extraCycles--; // perserve existing cf value old_cf = CF; // shift bit 0 into carry flag CF = (oper & 0x01) == 0x01; // shift operand result = oper >> 1; // old carry flag goes to bit 7 if (old_cf) result = result | 0x80; ZF = ((result & 0xff) == 0x00); NF = ((result & 0x80) == 0x80); SaveOperand(_currentOP.AddressMode, result); PC += _currentOP.Bytes; break; // RTI - return from interrupt case 0x40: // pull SR sr = PopByte(); NF = (sr & 0x80) == 0x80; VF = (sr & 0x40) == 0x40; DF = (sr & 0x08) == 0x08; IF = (sr & 0x04) == 0x04; ZF = (sr & 0x02) == 0x02; CF = (sr & 0x01) == 0x01; // pull PC PC = PopWord(); break; // RTS - return from subroutine case 0x60: PC = (ushort)(PopWord() + 1); break; // SBC - subtract memory from accumulator with borrow (NZCV) // A-M-C -> A (NZCV) case 0xe1: case 0xe5: case 0xe9: case 0xed: case 0xf1: case 0xf2: case 0xf5: case 0xf9: case 0xfd: if (DF) { result = HexToBCD(A) - HexToBCD((byte)oper); if (!CF) result--; CF = (result >= 0); // BCD numbers wrap around when subtraction is negative if (result < 0) result += 100; ZF = (result == 0); A = BCDToHex(result); // Unlike ZF and CF, the NF flag represents the MSB after conversion // to BCD. NF = (A > 0x7f); // extra clock cycle on CMOS in decimal mode if (_cpuType == e6502Type.CMOS) _extraCycles++; } else { ADC((byte)~oper); } PC += _currentOP.Bytes; break; // SEC - set carry flag case 0x38: CF = true; PC += _currentOP.Bytes; break; // SED - set decimal mode case 0xf8: DF = true; PC += _currentOP.Bytes; break; // SEI - set interrupt disable bit case 0x78: IF = true; PC += _currentOP.Bytes; break; // STA - store accumulator in memory case 0x81: case 0x85: case 0x8d: case 0x91: case 0x92: case 0x95: case 0x99: case 0x9d: SaveOperand(_currentOP.AddressMode, A); PC += _currentOP.Bytes; break; // STX - store X in memory case 0x86: case 0x8e: case 0x96: SaveOperand(_currentOP.AddressMode, X); PC += _currentOP.Bytes; break; // STY - store Y in memory case 0x84: case 0x8c: case 0x94: SaveOperand(_currentOP.AddressMode, Y); PC += _currentOP.Bytes; break; // STZ - Store zero case 0x64: case 0x74: case 0x9c: case 0x9e: SaveOperand(_currentOP.AddressMode, 0); PC += _currentOP.Bytes; break; // TAX - transfer accumulator to X (NZ) case 0xaa: X = A; ZF = ((X & 0xff) == 0x00); NF = ((X & 0x80) == 0x80); PC += _currentOP.Bytes; break; // TAY - transfer accumulator to Y (NZ) case 0xa8: Y = A; ZF = ((Y & 0xff) == 0x00); NF = ((Y & 0x80) == 0x80); PC += _currentOP.Bytes; break; // TRB - test and reset bits (Z) // Perform bitwise AND between accumulator and contents of memory case 0x14: case 0x1c: SaveOperand(_currentOP.AddressMode, ~A & oper); ZF = (A & oper) == 0x00; PC += _currentOP.Bytes; break; // TSB - test and set bits (Z) // Perform bitwise AND between accumulator and contents of memory case 0x04: case 0x0c: SaveOperand(_currentOP.AddressMode, A | oper); ZF = (A & oper) == 0x00; PC += _currentOP.Bytes; break; // TSX - transfer SP to X (NZ) case 0xba: X = SP; ZF = ((X & 0xff) == 0x00); NF = ((X & 0x80) == 0x80); PC += _currentOP.Bytes; break; // TXA - transfer X to A (NZ) case 0x8a: A = X; ZF = ((A & 0xff) == 0x00); NF = ((A & 0x80) == 0x80); PC += _currentOP.Bytes; break; // TXS - transfer X to SP (no flags -- some online docs are incorrect) case 0x9a: SP = X; PC += _currentOP.Bytes; break; // TYA - transfer Y to A (NZ) case 0x98: A = Y; ZF = ((A & 0xff) == 0x00); NF = ((A & 0x80) == 0x80); PC += _currentOP.Bytes; break; // The original 6502 has undocumented and erratic behavior if // undocumented op codes are invoked. The 65C02 on the other hand // are guaranteed to be NOPs although they vary in number of bytes // and cycle counts. These NOPs are listed in the OpcodeList.txt file // so the proper number of clock cycles are used. // // Instructions STP (0xdb) and WAI (0xcb) will reach this case. // For now these are treated as a NOP. default: PC += _currentOP.Bytes; break; } } private int GetOperand(AddressModes mode) { int oper = 0; switch (mode) { // Accumulator mode uses the value in the accumulator case AddressModes.Accumulator: oper = A; break; // Retrieves the byte at the specified memory location case AddressModes.Absolute: oper = memory[ GetImmWord() ]; break; // Indexed absolute retrieves the byte at the specified memory location case AddressModes.AbsoluteX: ushort imm = GetImmWord(); ushort result = (ushort)(imm + X); if (_currentOP.CheckPageBoundary) { if ((imm & 0xff00) != (result & 0xff00)) _extraCycles += 1; } oper = memory[ result ]; break; case AddressModes.AbsoluteY: imm = GetImmWord(); result = (ushort)(imm + Y); if (_currentOP.CheckPageBoundary) { if ((imm & 0xff00) != (result & 0xff00)) _extraCycles += 1; } oper = memory[result]; break; // Immediate mode uses the next byte in the instruction directly. case AddressModes.Immediate: oper = GetImmByte(); break; // Implied or Implicit are single byte instructions that do not use // the next bytes for the operand. case AddressModes.Implied: break; // Indirect mode uses the absolute address to get another address. // The immediate word is a memory location from which to retrieve // the 16 bit operand. case AddressModes.Indirect: oper = GetWordFromMemory(GetImmWord()); break; // The indexed indirect modes uses the immediate byte rather than the // immediate word to get the memory location from which to retrieve // the 16 bit operand. This is a combination of ZeroPage indexed and Indirect. case AddressModes.XIndirect: /* * 1) fetch immediate byte * 2) add X to the byte * 3) obtain word from this zero page address * 4) return the byte located at the address specified by the word */ oper = memory[GetWordFromMemory( (byte)(GetImmByte() + X))]; break; // The Indirect Indexed works a bit differently than above. // The Y register is added *after* the deferencing instead of before. case AddressModes.IndirectY: /* 1) Fetch the address (word) at the immediate zero page location 2) Add Y to obtain the final target address 3)Load the byte at this address */ ushort addr = GetWordFromMemory(GetImmByte()); oper = memory[addr + Y]; if (_currentOP.CheckPageBoundary) { if ((oper & 0xff00) != (addr & 0xff00)) _extraCycles++; } break; // Relative is used for branching, the immediate value is a // signed 8 bit value and used to offset the current PC. case AddressModes.Relative: oper = SignExtend(GetImmByte()); break; // Zero Page mode is a fast way of accessing the first 256 bytes of memory. // Best programming practice is to place your variables in 0x00-0xff. // Retrieve the byte at the indicated memory location. case AddressModes.ZeroPage: oper = memory[GetImmByte()]; break; case AddressModes.ZeroPageX: oper = memory[(GetImmByte() + X) & 0xff]; break; case AddressModes.ZeroPageY: oper = memory[(GetImmByte() + Y) & 0xff]; break; // this mode is from the 65C02 extended set // works like ZeroPageY when Y=0 case AddressModes.ZeroPage0: oper = memory[GetWordFromMemory((GetImmByte()) & 0xff)]; break; // for this mode do the same thing as ZeroPage case AddressModes.BranchExt: oper = memory[GetImmByte()]; break; default: break; } return oper; } private void SaveOperand(AddressModes mode, int data) { switch (mode) { // Accumulator mode uses the value in the accumulator case AddressModes.Accumulator: A = (byte)data; break; // Absolute mode retrieves the byte at the indicated memory location case AddressModes.Absolute: memory[GetImmWord()] = (byte)data; break; case AddressModes.AbsoluteX: memory[GetImmWord() + X] = (byte)data; break; case AddressModes.AbsoluteY: memory[GetImmWord() + Y] = (byte)data; break; // Immediate mode uses the next byte in the instruction directly. case AddressModes.Immediate: throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation"); // Implied or Implicit are single byte instructions that do not use // the next bytes for the operand. case AddressModes.Implied: throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation"); // Indirect mode uses the absolute address to get another address. // The immediate word is a memory location from which to retrieve // the 16 bit operand. case AddressModes.Indirect: throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation"); // The indexed indirect modes uses the immediate byte rather than the // immediate word to get the memory location from which to retrieve // the 16 bit operand. This is a combination of ZeroPage indexed and Indirect. case AddressModes.XIndirect: memory[GetWordFromMemory((byte)(GetImmByte() + X))] = (byte)data; break; // The Indirect Indexed works a bit differently than above. // The Y register is added *after* the deferencing instead of before. case AddressModes.IndirectY: memory[GetWordFromMemory(GetImmByte()) + Y] = (byte)data; break; // Relative is used for branching, the immediate value is a // signed 8 bit value and used to offset the current PC. case AddressModes.Relative: throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation"); // Zero Page mode is a fast way of accessing the first 256 bytes of memory. // Best programming practice is to place your variables in 0x00-0xff. // Retrieve the byte at the indicated memory location. case AddressModes.ZeroPage: memory[GetImmByte()] = (byte)data; break; case AddressModes.ZeroPageX: memory[(GetImmByte() + X) & 0xff] = (byte)data; break; case AddressModes.ZeroPageY: memory[(GetImmByte() + Y) & 0xff] = (byte)data; break; case AddressModes.ZeroPage0: memory[GetWordFromMemory((GetImmByte()) & 0xff)] = (byte)data; break; // for this mode do the same thing as ZeroPage case AddressModes.BranchExt: memory[GetImmByte()] = (byte)data; break; default: break; } } private ushort GetWordFromMemory(int address) { return (ushort)((memory[address + 1] << 8 | memory[address]) & 0xffff); } private ushort GetImmWord() { return (ushort)((memory[PC + 2] << 8 | memory[PC + 1]) & 0xffff); } private byte GetImmByte() { return memory[PC + 1]; } private int SignExtend(int num) { if (num < 0x80) return num; else return (0xff << 8 | num) & 0xffff; } private void Push(byte data) { memory[(0x0100 | SP)] = data; SP--; } private void Push(ushort data) { // HI byte is in a higher address, LO byte is in the lower address memory[(0x0100 | SP)] = (byte)(data >> 8); memory[(0x0100 | (SP-1))] = (byte)(data & 0xff); SP -= 2; } private byte PopByte() { SP++; return memory[(0x0100 | SP)]; } private ushort PopWord() { // HI byte is in a higher address, LO byte is in the lower address SP += 2; ushort idx = (ushort)(0x0100 | SP); return (ushort)((memory[idx] << 8 | memory[idx-1]) & 0xffff); } private void ADC(byte oper) { ushort answer = (ushort)(A + oper); if (CF) answer++; CF = (answer > 0xff); ZF = ((answer & 0xff) == 0x00); NF = (answer & 0x80) == 0x80; //ushort temp = (ushort)(~(A ^ oper) & (A ^ answer) & 0x80); VF = (~(A ^ oper) & (A ^ answer) & 0x80) != 0x00; A = (byte)answer; } private int HexToBCD(byte oper) { // validate input is valid packed BCD if (oper > 0x99) throw new InvalidOperationException("Invalid BCD number: " + oper.ToString("X2")); if ((oper & 0x0f) > 0x09) throw new InvalidOperationException("Invalid BCD number: " + oper.ToString("X2")); return ((oper >> 4) * 10) + (oper & 0x0f); } private byte BCDToHex(int result) { if (result > 0xff) throw new InvalidOperationException("Invalid BCD to hex number: " + result.ToString()); if (result <= 9) return (byte)result; else return (byte)(((result / 10) << 4) + (result % 10)); } private void DoIRQ(ushort vector) { DoIRQ(vector, false); } private void DoIRQ(ushort vector, bool isBRK) { // Push the MSB of the PC Push((byte)(PC >> 8)); // Push the LSB of the PC Push((byte)(PC & 0xff)); // Push the status register int sr = 0x00; if (NF) sr = sr | 0x80; if (VF) sr = sr | 0x40; sr = sr | 0x20; // bit 5 is unused and always 1 if(isBRK) sr = sr | 0x10; // software interrupt (BRK) pushes B flag as 1 // hardware interrupt pushes B flag as 0 if (DF) sr = sr | 0x08; if (IF) sr = sr | 0x04; if (ZF) sr = sr | 0x02; if (CF) sr = sr | 0x01; Push((byte)sr); // set interrupt disable flag IF = true; // On 65C02, IRQ, NMI, and RESET also clear the D flag (but not on BRK) after pushing the status register. if (_cpuType == e6502Type.CMOS && !isBRK) DF = false; // load program counter with the interrupt vector PC = GetWordFromMemory(vector); } private void CheckBranch(bool flag, int oper) { if (flag) { // extra cycle on branch taken _extraCycles++; // extra cycle if branch destination is a different page than // the next instruction if ((PC & 0xff00) != ((PC + oper) & 0xff00)) _extraCycles++; PC += (ushort)oper; } } } } 

Comentários

  • Ninguém é bem-vindo para PPCG, acho que ‘ aproveitarei esta oportunidade para. Esta é uma ótima primeira resposta e espero vê-lo por aí com mais frequência. Divirta-se!
  • Obrigado @StanStrum!Foi um post de SE anos atrás sobre um emulador 8086 que me interessou em emulação e aprender como esses dispositivos realmente funcionam. Foi ‘ muito divertido. Além do acima, eu tenho um emulador 8080 completo e um 8086 que está 90% pronto.
  • Isso ‘ é incrível, eu ‘ Tive interesse em fazer um emulador e / ou uma linguagem de programação de nível médio, mas não ‘ t tempo, paciência ou inteligência para fazê-lo

Deixe uma resposta

O seu endereço de email não será publicado. Campos obrigatórios marcados com *