Puteți urma comentariile lui Henry pentru a ajunge la răspuns. Cu toate acestea, un alt mod de a ajunge la răspuns este să folosiți faptul că dacă $ X $ și $ Y $ sunt independenți, apoi $ Y | X = Y $ și $ X | Y = X $ .
Prin așteptări iterate și expresii de varianță
\ begin {align *} \ text {Var} (XY) & = \ text {Var} [\, \ text {E} (XY | X) \,] + \ text {E} [\, \ text {Var} (XY | X) \,] \\ & = \ text {Var} [\, X \, \ text {E} (Y | X) \,] + E [\, X ^ 2 \, \ text {Var} (Y | X ) \,] \\ & = \ text {Var} [\, X \, \ text {E} (Y) \,] + E [\, X ^ 2 \ , \ text {Var} (Y) \,] \\ & = E (Y) ^ 2 \, \ text {Var} (X) + \ text {Var} ( Y) E (X ^ 2) \ ,. \ end {align *}
Comentarii