Pourquoi leffet moyen du traitement est-il différent de leffet moyen du traitement sur le traité?

Dans les ECR, la randomisation équilibre les facteurs de confusion non mesurés et, me dit-on, ATE et ATT seraient les mêmes. Dans les études observationnelles, ce nest pas possible et Propension Les scores sont utilisés de différentes manières pour estimer lATT et / ou lATE. Les analyses que jai effectuées et les exemples que jai vus (par exemple, ce texte utile) montre des ATT et ATE différents (quoique légèrement).

Quelquun peut-il maider à comprendre pourquoi ils sont différents et, plus important encore, ce que signifient les différences (par exemple, si ATE> ATT ou ATT> ATE), si quelque chose?

Réponse

L Effet moyen du traitement ( ATE ) et l Effet moyen du traitement sur les personnes traitées ( ATT ) sont généralement définis dans les différents groupes dindividus. En outre, ATE et ATT sont souvent différents car ils peuvent mesurer les résultats ($ Y $) qui ne sont pas affectés par le traitement $ D $ de la même manière.

Premièrement , une notation supplémentaire:

  • $ Y ^ 0 $: variable aléatoire au niveau de la population pour le résultat $ Y $ dans létat de contrôle.
  • $ Y ^ 1 $: population- variable aléatoire de niveau pour le résultat $ Y $ dans létat du traitement.
  • $ \ delta $: effet causal au niveau individuel du traitement.
  • $ \ pi $: proportion de la population qui prend traitement.

Compte tenu de ce qui précède, le ATT est défini comme suit: $ \ mathrm {E} [\ delta | D = 1] $ ie. quel est leffet causal attendu du traitement pour les personnes du groupe de traitement. Ceci peut être décomposé de manière plus significative comme: \ begin {align} \ mathrm {E} [\ delta | D = 1] = & \ mathrm {E} [Y ^ 1 – Y ^ 0 | D = 1] \\ & \ mathrm {E} [Y ^ 1 | D = 1] – \ mathrm {E} [Y ^ 0 | D = 1] \ end {align}

(Notez que $ \ mathrm {E} [Y ^ 0 | D = 1] $ nest pas observé, donc il fait référence à une variable contrefactuelle qui nest pas réalisée dans notre échantillon observé.) De même, le ATE est défini comme: $ \ mathrm {E} [\ delta] $, ie. quel est leffet causal attendu du traitement sur tous les individus de la population. Encore une fois, nous pouvons décomposer cela de manière plus significative comme suit: \ begin {align} \ mathrm {E} [\ delta] = & \ {\ pi \ mathrm {E} [Y ^ 1 | D = 1] + (1- \ pi) \ mathrm {E} [Y ^ 1 | D = 0] \} \\ – & \ {\ pi \ mathrm {E } [Y ^ 0 | D = 1] + (1- \ pi) \ mathrm {E} [Y ^ 0 | D = 0] \} \ end {align}

Comme vous voyez le ATT et le ATE plus général se réfèrent par définition à différentes parties de la population dintérêt. Plus important encore, dans le scénario idéal dun essai contrôlé randomisé ( ECR ) ATE est égal à ATT car nous supposons que:

  • $ \ mathrm {E} [Y ^ 0 | D = 1] = \ mathrm {E} [Y ^ 0 | D = 0] $ et
  • $ \ mathrm {E} [ Y ^ 1 | D = 1] = \ mathrm {E} [Y ^ 1 | D = 0] $,

ie. nous pensons respectivement que:

  • la ligne de base du groupe de traitement est égale à la ligne de base du groupe de contrôle (termes simples: les personnes dans le groupe de traitement feraient aussi mauvais que le groupe témoin s’ils n’étaient pas traités) et
  • l’effet du traitement sur le groupe traité est égal à l’effet du traitement sur le groupe témoin (termes simples: les personnes du groupe témoin feraient comme bien comme groupe de traitement sils ont été traités).

Ce sont des hypothèses très fortes qui sont souvent violées dans les études dobservation et donc le ATT et le ATE ne devrait pas être égal. (Notez que si seules les lignes de base sont égales, vous pouvez toujours obtenir un ATT par de simples différences: $ \ mathrm {E} [Y ^ 1 | D = 1] – \ mathrm {E} [Y ^ 0 | D = 0] $.)

Surtout dans les cas où les individus choisissent eux-mêmes dentrer dans le groupe de traitement ou non (par exemple, une boutique en ligne offrant un bonus en espèces où un client peut échanger un coupon bonus pour un montant de X $ étant donné quelle achète des articles dune valeur dau moins Y $) les lignes de base ainsi que les effets du traitement peuvent être différents (par exemple, les acheteurs réguliers sont plus susceptibles dutiliser un tel bonus, les clients de faible valeur pourraient trouver le seuil $ Y $ irréaliste ou les clients de grande valeur peuvent être indifférents au montant du bonus $ X $ – cela concerne également SUTVA ). Dans des scénarios comme celui-ci, même parler de ATE est probablement mal défini (par exemple, il nest pas réaliste de sattendre à ce que tous les clients dune boutique en ligne achètent un jour des articles dune valeur de Y $).

ATT être différent de ATE nest pas inattendu. Si ATT est inférieur ou supérieur à ATE est spécifique à lapplication. Linégalité des deux suggère que le mécanisme dattribution de traitement nétait pas potentiellement aléatoire. En général, dans une étude observationnelle, parce que les hypothèses mentionnées ci-dessus ne sont généralement pas valables, soit nous partitionnons notre échantillon en conséquence, soit nous contrôlons la différence par des techniques de «régression».

Pour une présentation plus détaillée mais facile à suivre de la question, je recommande dexaminer Morgan & Winship « s Contrefactuels et inférences causales .

Commentaires

  • Merci beaucoup pour cette réponse incroyablement détaillée et utile. Je ' Je ne suis pas un statisticien et jai parfois du mal avec les formules, mais cest très clair. Will Morga & Winship ' s être digéré par un profane, ou pouvez-vous suggérer un " dummy ' s guide " à linférence causale? Merci encore
  • Je suis heureux davoir pu aider. Je me suis principalement formé à partir darticles et jai donc une vision limitée des livres dinférence causale. Cela dit, je ont trouvé que le livre de M & W ' est clair et facile à comprendre; je pense quun profane incliné aura petits problèmes à résoudre. Le livre fait partie de la série " Analytical Methods for Social Research " de Cambridge Univ. Appuyez sur pour quil utilise principalement des exemples basés sur la sociologie. @ DimitriyV.Masterov pourrait avoir une suggestion plus éclairée.
  • Merci, je ' je vais men procurer une copie. " Linégalité des deux suggère que le mécanisme dattribution de traitement nétait pas potentiellement aléatoire. " Je suppose que dans une situation hypothétique où littéralement chaque ligne de base Le facteur de confusion a été mesuré dans une étude observationnelle, et il y avait une correspondance parfaite pour chaque PS, nous serions très proches de ces hypothèses. Par conséquent, la mesure dans laquelle ATT / ATE sont discordants fournirait-elle des informations significatives sur le niveau déquilibre du PS pour les facteurs de confusion non mesurés?
  • Dans une situation hypothétique , oui. Je pense que ce serait significatif dans le contexte dune étude de simulation. Cela dit, lutiliser pour quantifier " pauvreté / bonté " de léquilibre atteint par PS est probablement un exercice méthodique en soi. (Bonne lecture!)
  • @bobmcpop Je ' suis un statisticien, et je nai jamais compris pourquoi quelquun voudrait mesurer lATT au lieu de lATE. Il est ' important davoir un groupe témoin pour tenir compte de la régression vers les effets moyens & autres facteurs – vous ' ce nest pas indiqué lorsque vous utilisez le ATT.

Answer

ATE est la moyenne effet du traitement, et ATT est leffet moyen du traitement sur le traité.

LATT est leffet du traitement réellement appliqué. Les études médicales utilisent généralement le TCA comme quantité dintérêt désignée, car elles ne se soucient souvent que de leffet causal des médicaments sur les patients qui reçoivent ou recevraient les médicaments.

Pour un autre exemple, ATT nous indique combien le soldat typique gagné ou perdu à la suite du service militaire, tandis que lATE nous dit combien le candidat typique aux militaires a gagné ou perdu.

Commentaires

  • Vous ' confondez le TCA avec l’effet d’intention de traiter ITT.
  • Je ne ' t confondre. Je me réfère à cet article: Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2007). Appariement en tant que prétraitement non paramétrique pour réduire la dépendance du modèle dans linférence causale paramétrique. Analyse politique, 15 (3), 199-236.
  • Vous ' avez raison, jai mal compris.
  • Cest lun des explications les plus claires que jai vues de ATE vs ATT

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *