Wat zijn de eenheden voor thermische geleidbaarheid?

Wat zijn de eenheden voor thermische geleidbaarheid en waarom?

Opmerkingen

  • Wat gebeurt er in thermische geleidbaarheid en welke factoren bepalen de hoeveelheid overgedragen energie?

Antwoord

Thermische geleidbaarheid heeft afmetingen van $ \ mathrm {Power / (lengte * temperatuur)} $. Vermogen is de snelheid van de warmtestroom, (dat wil zeggen) de energiestroom in een bepaalde tijd. Lengte vertegenwoordigt de dikte van het materiaal waar de warmte doorheen stroomt, en temperatuur is het verschil in temperatuur waardoor de warmte stroomt.

In SI-eenheden wordt het gewoonlijk uitgedrukt als $ \ mathrm {Watts / ( meter * Kelvin)} $, en in Amerikaanse eenheden, wordt het gewoonlijk gegeven in $ \ mathrm {BTU / hr / (feet \ * \ ^ oF)} $.

Het geeft de snelheid aan waarmee warmte wordt geleid door een eenheidsdikte van een bepaald medium. Die snelheid zal lineair variëren op basis van het temperatuurverschil over het materiaal, dus het wordt uitgedrukt als een waarde per graad temperatuurverschil, dus Heat Rate per dikte-eenheid per graad temperatuurverschil.

Opmerkingen

  • Dit is niet juist, de afstand in dit toestel is niet dikte. Er is een goede uitleg in een van de onderstaande antwoorden. De afstand in deze eenheid is in wezen een wiskundige abstractie, een beetje zoals versnelling wordt aangehaald als afstand * tijd ^ 2 (wat een wiskundig correcte reductie is indien beperkt tot specifieke basiseenheden), maar het algemene fysieke concept is (afstand per tijd) * (tijd van actie) die bestand is tegen een mix van eenheden en een betere visualisatie biedt voor veel studenten.

Antwoord

Thermische geleidbaarheid is, zoals Mark schrijft, in SI-eenheden gemeten in $ Wm ^ {- 1} K ^ {- 1} $, dwz $ \ frac {vermogen} {afstand \ maal temperatuur} $

De $ m ^ {- 1} $ heeft echter wat meer uitleg nodig.

De snelheid van de warmtestroom is evenredig met het oppervlak en omgekeerd evenredig met de dikte. Dus voor de eenheid van thermische geleidbaarheid geeft dikte een $ afstand ^ 1 $ in de teller en geeft het oppervlak een $ afstand ^ 2 $ in de noemer.

Daarom is thermische geleidbaarheid $ \ frac { vermogen \ tijden afstand} {afstand ^ 2 \ tijden temperatuur} $.

En dus als we $ afstand ^ 1 $ annuleren van teller en noemer, krijgen we $ \ frac {vermogen} {afstand \ tijden temperatuur } $

Antwoord

Mogelijk moet u R-waarde opzoeken die nauw verwant is aan thermische geleidbaarheid en in zo veel in plaats daarvan.

De eenheden zijn $ \ frac {(ft ^ 2.h. ^ {\ circ} F)} {BTU} $ in US en $ \ frac {(Km ^ 2)} {W} $ in SI .

Deze twee eenheden (thermische geleidbaarheid en R-waarde) kunnen heel gemakkelijk naar elkaar worden geconverteerd door Say if x is onze thermische geleidbaarheidswaarde voor ons materiaal, dus de R-waarde zal zijn,

a is de dikte in meters

$$ \ frac {1} {x} * (a) $$

Geef een reactie

Het e-mailadres wordt niet gepubliceerd. Vereiste velden zijn gemarkeerd met *